Skip to main content

Kalkulus


Comments

Popular posts from this blog

Metode Penyelesaian Limit

A. Limit fungsi f(x) untuk x menuju nilai tertentu (x→a,a∈R)  1. Substitusi langsung pada fungsinya  Misalkan ingin diketahui hasil limit f(x) saat x mendekati c. Jika f(c) tidak tak terdefinisi atau tidak tak tentu atau tidak tak hingga, maka umumnya nilai limit f(x) saat x mendekati c adalah f(c). Cara ini diperoleh dengan memanfaatkan kekontinyuan fungsi di titik c. Contoh a) b) Jika fungsi tidak kontinyu di c maka cara ini tidak bisa digunakan. Contoh a) tidak bisa substitusi langsung karena untuk x=1 fungsi memuat bentuk tak tentu 0/0. b) Diberikan Tentukan Jawab: Dari fungsi jelas f(4)=0 tetapi . Jadi tidak berlaku walaupun f(4) ada yaitu 0 ini tidak bisa memakai cara substitusi langsung. 2. Menyederhanakan bentuk rasional  Cara ini diperoleh dengan membagi faktor yang sama pada pembilang dan penyebut. Contoh a) b) 3.  Modifikasi bentuk k/0 dengan k ≠ 0.  Contoh Bentuk ini memuat 2/0...

Contoh Soal integral parsial kuliah

  Jika $u$ dan $v$ adalah fungsi $x$ yang dapat dideferensiasi, maka Untuk dapat menggunakan rumus integral parsial (sebagian), integral yang diberikan harus dipisahkan menjadi dua bagian, satu bagian adalah $u$ dan bagian lainnya yang memuat $dx$ adalah $dv$. Aturan umum integral parsial adalah sbb: a) Bagian yang dipilih sebagai $dv$ harus dapat segera diintegralkan. b) $∫vdu$  harus lebih mudah dari $∫udv$ Contoh-1 . cari $\int{x^{3}e^{x^{2}}}dx$ Ambil $u=x^2$-->$du=2xdx$,  dan $dv=xe^{x^{2}}dx$-->$v=\int{xe^{x^{2}}}dx=\frac{1}{2}e^{x^{2}}$ dengan aturan  integral parsial   maka   Cara lain   Contoh-2 . cari $\int_{0}^{5}{x\ln(x+4)}dx$ Ambil $u=\ln(x+4)$-->$du=\frac{dx}{x+4}$,  dan $dv=xdx$-->$v=\int{xdx=\frac{1}{2}x^2}$ dengan aturan  integral parsial maka Integral tentu yang ditanyakan adalah: Rumus-rumus Reduksi  Integral Parsial Langkah-langkah yang rumit dalam penyelesaian integral parsial dapat dikurang...

Limit Fungsi

Misalkan diberikan fungsi  f(𝑥) = 𝑥². Amati nilai f(𝑥) pada sumbu y bila 𝑥 mendekati 2 pada sumbu x. pada saat itu perhatikan bahwa f(𝑥) mendekati suatu nilai tertentu.  Fokus perhatian kita adalah pada sumbu y, bukan pada f(𝑥) = 𝑥². perlu diketahui pula bahwa mendekati 2 pada contoh ini adalah mendekati dari kiri dan kanan karena fungsi terdefinisi di 𝑥 < 2 dan 𝑥 > 2.    Mencermati ilustrasi tersebut adalah wajar bila kita simpulkan f(𝑥) mendekati 4 jika 𝑥 mendekati 2, dengan kata lain 4 adalah limit atau batas untuk f(𝑥) saat 𝑥 mendekati 2 . Nilai 4 yang didekati oleh f(𝑥) saat 𝑥 mendekati 2  tak ada kaitannya dengan nilai f(2)=4. Bahkan seandainya f(2) tidak terdefinisi, f(𝑥) tetap mendekati 4 saat 𝑥 mendekati 2. Hal ini dalam matematika ditulis dalam bentuk simbolis sebagai Definisi formal limit Misalkan f(𝑥) didefinisikan dan bernilai tunggal untuk semua nilai 𝑥 di dekat 𝑥 = a de...