Skip to main content

Kalkulus


Comments

Popular posts from this blog

Contoh Soal integral parsial kuliah

  Jika $u$ dan $v$ adalah fungsi $x$ yang dapat dideferensiasi, maka Untuk dapat menggunakan rumus integral parsial (sebagian), integral yang diberikan harus dipisahkan menjadi dua bagian, satu bagian adalah $u$ dan bagian lainnya yang memuat $dx$ adalah $dv$. Aturan umum integral parsial adalah sbb: a) Bagian yang dipilih sebagai $dv$ harus dapat segera diintegralkan. b) $∫vdu$  harus lebih mudah dari $∫udv$ Contoh-1 . cari $\int{x^{3}e^{x^{2}}}dx$ Ambil $u=x^2$-->$du=2xdx$,  dan $dv=xe^{x^{2}}dx$-->$v=\int{xe^{x^{2}}}dx=\frac{1}{2}e^{x^{2}}$ dengan aturan  integral parsial   maka   Cara lain   Contoh-2 . cari $\int_{0}^{5}{x\ln(x+4)}dx$ Ambil $u=\ln(x+4)$-->$du=\frac{dx}{x+4}$,  dan $dv=xdx$-->$v=\int{xdx=\frac{1}{2}x^2}$ dengan aturan  integral parsial maka Integral tentu yang ditanyakan adalah: Rumus-rumus Reduksi  Integral Parsial Langkah-langkah yang rumit dalam penyelesaian integral parsial dapat dikurang...

Turunan Fungsi Implisit

Suatu persamaan $f(x,y)=0$ pada jangkauan terbatas dari variabel-variabel tertentu dikatakan mendefinisikan $y$ sebagai fungsi $x$ secara implisit.    Contoh 1:  a) Persamaan $xy+x-y-2=0$, dengan $x≠1$ mendefinisikan fungsi $y=\frac{(2-x)}{(x-1)}$.  b) Persamaan $x^{2}+y^{2}-16=0$, mendefinisikan fungsi $y=\sqrt{16-x^{2}}$  jika $|x|≤4$ dan $y≥0$, dan fungsi  $y=-\sqrt{16-x^{2}}$  jika $|x|≤4$ dan $y≤0$. Perhatikan, lingkarannya harus dianggap terdiri dari dua busur yang bertemu di $(-4,0)$ dan $(4,0)$.   Untuk mendapatkan turunan fungsi implisit caranya turunkan kedua ruas terhadap $x$.    Contoh 2 . Cari $y’$ dan $y’’$ pada contoh 1.a. Berapa $y’$ di $x=2$ dan $y’’$ di $x=3$?  Solusi:  Mencari $y’$ Mencari $y’’$   Contoh 3 .  Cari $y’$ dan $y’’$ pada contoh 1.b. Berapa $y’$ di $x=3$ dan $y’’$ di $x=3$?  Iklan. semoga Anda tertarik Solusi:  Mencari $y’$    Mencari $y’...

Turunan Fungsi Aljabar

Fungsi aljabar adalah fungsi yang paling sering ditemui dalam permasalahan matematika yang meliputi fungsi rasional, linear, kuadrat, kubik dan seterusnya. Suatu fungsi aljabar (bidang) adalah fungsi yang persamaannya dapat ditulis sebagai Dengan $u_{n}(x)$ adalah suatu polinomial dalam $x$. Contoh. fungsi kuadrat $y = x^{2} – 10x+25$. Dari fungsi ini maka didapat $n=2, a=0, b=0, c=1, d=-1, e=10, f=-25$, dan $u_{3}(x)=u_{4}(x)=…=u_{n}(x)=0$. Turunan fungsi aljabar  dapat diperoleh dengan menerapkan definisi turunan fungsi pada fungsi-fungsi aljabar. Suatu fungsi aljabar (begitu juga fungsi transenden misalnya fungsi trigonometri) dapat diturunkan di $x = a $ jika fungsi itu mempunyai turunan di titik tersebut. Suatu fungsi aljabar dapat diturunkan pada suatu selang  jika fungsi itu mempunyai turunan di setiap titik pada selang tersebut. 1. Turunan fungsi konstan Misalkan $y =f(x) = c$, dengan $c$ sebuah konstanta sembarang maka Bukti Contoh 2...